Star's Blog

Keep learning, Keep improving


  • 首页

  • 分类

  • 关于

  • 标签

  • 归档

  • 搜索

为了追求极致的性能,Kafka掌控了这11项要领!

发表于 2019-07-20 | 分类于 中间件

很多同学私信问我Kafka在性能优化方面做了哪些举措,对于相关问题的答案其实我早就写过了,就是没有系统的整理一篇,最近思考着花点时间来整理一下,下次再有同学问我相关的问题我就可以潇洒的甩个链接了。这个问题也是Kafka面试的时候的常见问题,面试官问你这个问题也不算刁难你。在网上也有很多相关的文章开讲解这个问题,比如之前各大公众号转载的“为什么Kafka这么快?”,这些文章我看了,写的不错,问题在于只是罗列了部分的要领,没有全部的详述出来。本文所罗列的要领会比你们网上搜寻到的都多,如果你在看完本篇文章之后,在面试的时候遇到相关问题,相信你一定能让面试官眼前一亮。

批量处理

传统消息中间件的消息发送和消费整体上是针对单条的。对于生产者而言,它先发一条消息,然后broker返回ACK表示已接收,这里产生2次rpc;对于消费者而言,它先请求接受消息,然后broker返回消息,最后发送ACK表示已消费,这里产生了3次rpc(有些消息中间件会优化一下,broker返回的时候返回多条消息)。而Kafka采用了批量处理:生产者聚合了一批消息,然后再做2次rpc将消息存入broker,这原本是需要很多次的rpc才能完成的操作。假设需要发送1000条消息,每条消息大小1KB,那么传统的消息中间件需要2000次rpc,而Kafka可能会把这1000条消息包装成1个1MB的消息,采用2次rpc就完成了任务。这一改进举措一度被认为是一种“作弊”的行为,然而在微批次理念盛行的今日,其它消息中间件也开始纷纷效仿。

客户端优化

这里接着批量处理的概念继续来说,新版生产者客户端摒弃了以往的单线程,而采用了双线程:主线程和Sender线程。主线程负责将消息置入客户端缓存,Sender线程负责从缓存中发送消息,而这个缓存会聚合多个消息为一个批次。有些消息中间件会把消息直接扔到broker。

日志格式

Kafka从0.8版本开始日志格式历经了三次变革:v0、v1、v2。在之前发过的一篇文章《一文看懂Kafka消息格式的演变》中详细介绍了Kafka日志格式,Kafka的日志格式越来越利于批量消息的处理,有兴趣的同学可以阅读一下这篇文章以作了解。

日志编码

如果了解了Kafka具体的日志格式(可以参考上图),那么你应该了解日志(Record,或者称之为消息)本身除了基本的key和value之外,还有一些其它的字段,原本这些附加字段按照固定的大小占用一定的篇幅(参考上图左),而Kafka最新的版本中采用了变成字段Varints和ZigZag编码,有效地降低了这些附加字段的占用大小。日志(消息)尽可能变小了,那么网络传输的效率也会变高,日志存盘的效率也会提升,从而整理的性能也会有所提升。

消息压缩

Kafka支持多种消息压缩方式(gzip、snappy、lz4)。对消息进行压缩可以极大地减少网络传输 量、降低网络 I/O,从而提高整体的性能。消息压缩是一种使用时间换空间的优化方式,如果对 时延有一定的要求,则不推荐对消息进行压缩。

建立索引,方便快速定位查询

每个日志分段文件对应了两个索引文件,主要用来提高查找消息的效率,这也是提升性能的一种方式。(具体的内容在书中的第5章有详细的讲解,公众号里好像忘记发表了,找了一圈没找到)

分区

很多人会忽略掉这个因素,其实分区也是提升性能的一种非常有效的方式,这种方式所带来的效果会比前面所说的日志编码、消息压缩等更加的明显。分区在其他分布式组件中也有大量涉及,至于为什么分区能够提升性能这种基本知识在这里就不在赘述了。不过需要注意,一昧地增加分区并不能一直带来性能的提升,有兴趣的同学可以看一下这篇《Kafka主题中的分区数越多吞吐量就越高?》。

一致性

绝大多数的资料在讲述Kafka性能优化的举措之时是不会提及一致性的东西的。我们所了解的通用的一致性协议如Paxos、Raft、Gossip等,而Kafka另辟蹊径采用类似PacificA的做法不是“拍大腿”拍出来的,采用这种模型会提升整理的效率。具体的细节后面会整理一篇,类似《在Kafka中使用Raft替换PacificA的可行性分析及优缺点》。

顺序写盘

操作系统可以针对线性读写做深层次的优化,比如预读(read-ahead,提前将一个比较大的磁盘块读入内存) 和后写(write-behind,将很多小的逻辑写操作合并起来组成一个大的物理写操作)技术。Kafka 在设计时采用了文件追加的方式来写入消息,即只能在日志文件的尾部追加新的消 息,并且也不允许修改已写入的消息,这种方式属于典型的顺序写盘的操作,所以就算 Kafka 使用磁盘作为存储介质,它所能承载的吞吐量也不容小觑。

页缓存

为什么Kafka性能这么高?当遇到这个问题的时候很多人都会想到上面的顺序写盘这一点。其实在顺序斜盘前面还有页缓存(PageCache)这一层的优化。

页缓存是操作系统实现的一种主要的磁盘缓存,以此用来减少对磁盘 I/O 的操作。具体 来说,就是把磁盘中的数据缓存到内存中,把对磁盘的访问变为对内存的访问。为了弥补性 能上的差异,现代操作系统越来越“激进地”将内存作为磁盘缓存,甚至会非常乐意将所有 可用的内存用作磁盘缓存,这样当内存回收时也几乎没有性能损失,所有对于磁盘的读写也 将经由统一的缓存。

当一个进程准备读取磁盘上的文件内容时,操作系统会先查看待读取的数据所在的页 (page)是否在页缓存(pagecache)中,如果存在(命中)则直接返回数据,从而避免了对物 理磁盘的 I/O 操作;如果没有命中,则操作系统会向磁盘发起读取请求并将读取的数据页存入 页缓存,之后再将数据返回给进程。同样,如果一个进程需要将数据写入磁盘,那么操作系统也会检测数据对应的页是否在页缓存中,如果不存在,则会先在页缓存中添加相应的页,最后将数据写入对应的页。被修改过后的页也就变成了脏页,操作系统会在合适的时间把脏页中的 数据写入磁盘,以保持数据的一致性。

对一个进程而言,它会在进程内部缓存处理所需的数据,然而这些数据有可能还缓存在操 作系统的页缓存中,因此同一份数据有可能被缓存了两次。并且,除非使用 Direct I/O 的方式, 否则页缓存很难被禁止。此外,用过 Java 的人一般都知道两点事实:对象的内存开销非常大, 通常会是真实数据大小的几倍甚至更多,空间使用率低下;Java 的垃圾回收会随着堆内数据的 增多而变得越来越慢。基于这些因素,使用文件系统并依赖于页缓存的做法明显要优于维护一 个进程内缓存或其他结构,至少我们可以省去了一份进程内部的缓存消耗,同时还可以通过结构紧凑的字节码来替代使用对象的方式以节省更多的空间。如此,我们可以在 32GB 的机器上使用 28GB 至 30GB 的内存而不用担心 GC 所带来的性能问题。此外,即使 Kafka 服务重启, 页缓存还是会保持有效,然而进程内的缓存却需要重建。这样也极大地简化了代码逻辑,因为 维护页缓存和文件之间的一致性交由操作系统来负责,这样会比进程内维护更加安全有效。

Kafka 中大量使用了页缓存,这是 Kafka 实现高吞吐的重要因素之一。虽然消息都是先被写入页缓存,然后由操作系统负责具体的刷盘任务的。

阅读全文 »

深入理解Docker容器和镜像

发表于 2019-06-18 | 分类于 服务器

这篇文章希望能够帮助读者深入理解Docker的命令,还有容器(container)和镜像(image)之间的区别,并深入探讨容器和运行中的容器之间的区别。

当我对Docker技术还是一知半解的时候,我发现理解Docker的命令非常困难。于是,我花了几周的时间来学习Docker的工作原理,更确切地说,是关于Docker统一文件系统(the union file system)的知识,然后回过头来再看Docker的命令,一切变得顺理成章,简单极了。

题外话:就我个人而言,掌握一门技术并合理使用它的最好办法就是深入理解这项技术背后的工作原理。通常情况下,一项新技术的诞生常常会伴随着媒体的大肆宣传和炒作,这使得用户很难看清技术的本质。更确切地说,新技术总是会发明一些新的术语或者隐喻词来帮助宣传,这在初期是非常有帮助的,但是这给技术的原理蒙上了一层砂纸,不利于用户在后期掌握技术的真谛。

Git就是一个很好的例子。我之前不能够很好的使用Git,于是我花了一段时间去学习Git的原理,直到这时,我才真正明白了Git的用法。我坚信只有真正理解Git内部原理的人才能够掌握这个工具。

Image Definition

镜像(Image)就是一堆只读层(read-only layer)的统一视角,也许这个定义有些难以理解,下面的这张图能够帮助读者理解镜像的定义。

从左边我们看到了多个只读层,它们重叠在一起。除了最下面一层,其它层都会有一个指针指向下一层。这些层是Docker内部的实现细节,并且能够在主机(译者注:运行Docker的机器)的文件系统上访问到。统一文件系统(union file system)技术能够将不同的层整合成一个文件系统,为这些层提供了一个统一的视角,这样就隐藏了多层的存在,在用户的角度看来,只存在一个文件系统。我们可以在图片的右边看到这个视角的形式。

你可以在你的主机文件系统上找到有关这些层的文件。需要注意的是,在一个运行中的容器内部,这些层是不可见的。在我的主机上,我发现它们存于/var/lib/docker/aufs目录下。

1
sudo tree -L 1 /var/lib/docker//var/lib/docker/

Container Definition

容器(container)的定义和镜像(image)几乎一模一样,也是一堆层的统一视角,唯一区别在于容器的最上面那一层是可读可写的。

细心的读者可能会发现,容器的定义并没有提及容器是否在运行,没错,这是故意的。正是这个发现帮助我理解了很多困惑。

要点:容器 = 镜像 + 读写层。并且容器的定义并没有提及是否要运行容器。

接下来,我们将会讨论运行态容器。

Running Container Definition

一个运行态容器(running container)被定义为一个可读写的统一文件系统加上隔离的进程空间和包含其中的进程。下面这张图片展示了一个运行中的容器。

阅读全文 »

阿里淘宝的高并发分布式架构演进之路

发表于 2019-06-17 | 分类于 系统架构

本文以淘宝作为例子,介绍从一百个并发到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则。

基本概念

在介绍架构之前,为了避免部分读者对架构设计中的一些概念不了解,下面对几个最基础的概念进行介绍:

  • 分布式
    系统中的多个模块在不同服务器上部署,即可称为分布式系统,如Tomcat和数据库分别部署在不同的服务器上,或两个相同功能的Tomcat分别部署在不同服务器上
  • 高可用
    系统中部分节点失效时,其他节点能够接替它继续提供服务,则可认为系统具有高可用性
  • 集群
    一个特定领域的软件部署在多台服务器上并作为一个整体提供一类服务,这个整体称为集群。如Zookeeper中的Master和Slave分别部署在多台服务器上,共同组成一个整体提供集中配置服务。在常见的集群中,客户端往往能够连接任意一个节点获得服务,并且当集群中一个节点掉线时,其他节点往往能够自动的接替它继续提供服务,这时候说明集群具有高可用性
  • 负载均衡
    请求发送到系统时,通过某些方式把请求均匀分发到多个节点上,使系统中每个节点能够均匀的处理请求负载,则可认为系统是负载均衡的
  • 正向代理和反向代理
    系统内部要访问外部网络时,统一通过一个代理服务器把请求转发出去,在外部网络看来就是代理服务器发起的访问,此时代理服务器实现的是正向代理;当外部请求进入系统时,代理服务器把该请求转发到系统中的某台服务器上,对外部请求来说,与之交互的只有代理服务器,此时代理服务器实现的是反向代理。简单来说,正向代理是代理服务器代替系统内部来访问外部网络的过程,反向代理是外部请求访问系统时通过代理服务器转发到内部服务器的过程。

架构演进

单机架构

以淘宝作为例子。在网站最初时,应用数量与用户数都较少,可以把Tomcat和数据库部署在同一台服务器上。浏览器往www.taobao.com发起请求时,首先经过DNS服务器(域名系统)把域名转换为实际IP地址10.102.4.1,浏览器转而访问该IP对应的Tomcat。

随着用户数的增长,Tomcat和数据库之间竞争资源,单机性能不足以支撑业务

第一次演进:Tomcat与数据库分开部署

Tomcat和数据库分别独占服务器资源,显著提高两者各自性能。

随着用户数的增长,并发读写数据库成为瓶颈

第二次演进:引入本地缓存和分布式缓存

在Tomcat同服务器上或同JVM中增加本地缓存,并在外部增加分布式缓存,缓存热门商品信息或热门商品的html页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉,大大降低数据库压力。其中涉及的技术包括:使用memcached作为本地缓存,使用Redis作为分布式缓存,还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。

缓存抗住了大部分的访问请求,随着用户数的增长,并发压力主要落在单机的Tomcat上,响应逐渐变慢

第三次演进:引入反向代理实现负载均衡
阅读全文 »

分库分表技术演进暨最佳实践

发表于 2019-06-14 | 分类于 系统架构

每个优秀的程序员和架构师都应该掌握分库分表,移动互联网时代,海量的用户每天产生海量的数量,比如:

  • 用户表
  • 订单表
  • 交易流水表

我们以支付宝为例,支付宝用户是8亿;微信用户更是10亿。而订单表更夸张,比如美团外卖,每天都是几千万的订单。淘宝的历史订单总量应该百亿,甚至千亿级别,这些海量数据远不是一张表能Hold住的。

事实上,MySQL单表可以存储10亿级数据,只是这时候性能比较差。业界公认MySQL单表容量在1千万以下是最佳状态,因为这时它的BTREE索引树高在3~5之间。

既然一张表无法搞定,那么就想办法将数据放到多个地方,目前比较普遍的方案有3个:

  1. 分区;
  2. 分库分表;
  3. NoSQL / NewSQL;

说明一下:只分库,或者只分表,或者分库分表融合方案都统一认为是分库分表方案。因为分库,或者分表只是一种特殊的分库分表而已。NoSQL比较具有代表性的是MongoDB,es。NewSQL比较具有代表性的是TiDB。

Why Not NoSQL / NewSQL?

首先,为什么不选择第三种方案NoSQL/NewSQL,我认为主要是RDBMS有以下几个优点:

  • RDBMS生态完善;
  • RDBMS绝对稳定;
  • RDBMS的事务特性;

NoSQL/NewSQL作为新生儿,在我们把可靠性当做首要考察对象时,它是无法与RDBMS相提并论的。RDBMS发展几十年,只要有软件的地方,它都是核心存储的首选。

目前绝大部分公司的核心数据都是:以 RDBMS 存储为主,NoSQL / NewSQL存储为辅!

互联网公司又以MySQL为主,国企 & 银行等不差钱的企业以Oracle / DB2为主!NoSQL/NewSQL宣传的无论多牛逼,就现在各大公司对它的定位,都是RDBMS的补充,而不是取而代之!

Why Not 分区?

我们再看分区表方案。了解这个方案之前,先了解它的原理:

分区表是由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们也可以直接访问各个分区。

存储引擎管理分区的各个底层表和管理普通表一样(所有的底层表都必须使用相同的存储引擎),分区表的索引只是在各个底层表上各自加上一个相同的索引。

从存储引擎的角度来看,底层表和一个普通表没有任何不同,存储引擎也无须知道这是一个普通表还是一个分区表的一部分。

事实上,这个方案也不错,它对用户屏蔽了sharding的细节,即使查询条件没有sharding column,它也能正常工作(只是这时候性能一般)。

不过它的缺点很明显:很多的资源都受到单机的限制,例如连接数,网络吞吐等!

虽然每个分区可以独立存储,但是分区表的总入口还是一个MySQL示例。从而导致它的并发能力非常一般,远远达不到互联网高并发的要求!

至于网上提到的一些其他缺点比如:无法使用外键,不支持全文索引。我认为这都不算缺点,21世纪的项目如果还是使用外键和数据库的全文索引,我都懒得吐槽了!

所以,如果使用分区表,你的业务应该具备如下两个特点:

  1. 数据不是海量(分区数有限,存储能力就有限);
  2. 并发能力要求不高;

Why 分库分表?

最后要介绍的就是目前互联网行业处理海量数据的通用方法:分库分表。

虽然大家都是采用分库分表方案来处理海量核心数据,但是还没有一个一统江湖的中间件,笔者这里列举一些有一定知名度的分库分表中间件:

  • 阿里的TDDL,DRDS和cobar

  • 开源社区的sharding-jdbc(3.x已经更名为sharding-sphere)

  • 民间组织的MyCAT

  • 360的Atlas;

  • 美团的zebra

备注:sharding-jdbc 的作者张亮大神原来在当当,现在在京东金融。但是sharding-jdbc的版权属于开源社区,不是公司的,也不是张亮个人的!

其他比如网易,58,京东等公司都有自研的中间件。总之各自为战,也可以说是百花齐放。

但是这么多的分库分表中间件全部可以归结为两大类型:

  • CLIENT模式
  • PROXY模式

CLIENT模式代表有阿里的TDDL,开源社区的sharding-jdbc(sharding-jdbc的3.x版本即sharding-sphere已经支持了proxy模式)

架构如下:

PROXY模式代表有阿里的cobar,民间组织的MyCAT,架构如下:

但是,无论是CLIENT模式,还是PROXY模式。几个核心的步骤是一样的:SQL解析,重写,路由,执行,结果归并。

笔者比较倾向于CLIENT模式,架构简单,性能损耗较小,运维成本低。

接下来,以几个常见的大表为案例,说明分库分表如何落地!

实战案例

分库分表第一步也是最重要的一步,即sharding column的选取,sharding column 选择的好坏将直接决定整个分库分表方案最终是否成功。

而sharding column的选取跟业务强相关,笔者认为选择sharding column的方法最主要分析你的API流量,优先考虑流量大的API,将流量比较大的API对应的SQL提取出来,将这些SQL共同的条件作为sharding column。

例如一般的OLTP系统都是对用户提供服务,这些API对应的SQL都有条件用户ID,那么,用户ID就是非常好的sharding column。

这里列举分库分表的几种主要处理思路:

  1. 只选取一个sharding column进行分库分表 ;
  2. 多个sharding column多个分库分表;
  3. sharding column分库分表 + es;

再以几张实际表为例,说明如何分库分表。

订单表

订单表几个核心字段一般如下:

以阿里订单系统为例(参考《企业IT架构转型之道:阿里巴巴中台战略思想与架构实现》),它选择了三个column作为三个独立的sharding column。

即:order_id,user_id,merchant_code

其中,user_id和merchant_code就是买家ID和卖家ID,因为阿里的订单系统中买家和卖家的查询流量都比较大,并且查询对实时性要求都很高。而根据order_id进行分库分表,应该是根据order_id的查询也比较多。

这里还有一点需要提及,多个sharding-column的分库分表是冗余全量还是只冗余关系索引表,需要我们自己权衡。

冗余全量的情况如下图,每个sharding列对应的表的数据都是全量的,这样做的优点是不需要二次查询,性能更好,缺点是比较浪费存储空间(浅绿色字段就是sharding-column):

阅读全文 »

热点缓存集群架构设计

发表于 2019-06-11 | 分类于 系统架构

面对一个热点缓存,咱们的攻城狮兄弟应该如何设计系统架构,才能抗住瞬间高峰的粉丝流量!

也希望能借着这种热点话题,帮大家重新复习一下热点缓存架构设计相关的技术要点!

话不多说,进入正题!

为什么要用缓存集群

其实使用缓存集群的时候,最怕的就是热key、大value这两种情况,那啥叫热key大value呢?

简单来说,热key,就是你的缓存集群中的某个key瞬间被数万甚至十万的并发请求打爆。大value,就是你的某个key对应的value可能有GB级的大小,导致查询value的时候导致网络相关的故障问题。

我们先来看看下面一幅图,假设你手头有个系统,他本身是集群部署的,然后后面有一套缓存集群,这个集群不管你用redis cluster,还是memcached,或者是公司自研缓存集群,都可以。

那么,这套系统用缓存集群干什么呢?

很简单,在缓存里放一些平时不怎么变动的数据,然后用户在查询大量的平时不怎么变动的数据的时候,不就可以直接从缓存里走了吗?

缓存集群的并发能力是很强的,而且读缓存的性能是很高的。举个例子,假设你每秒有2万请求,但是其中90%都是读请求,那么每秒1.8万请求都是在读一些不太变化的数据,而不是写数据。

那此时你把这些数据都放在数据库里,然后每秒发送2万请求到数据库上读写数据,你觉得合适吗?

当然不合适了,如果你要用数据库承载每秒2万请求的话,那么不好意思,你很可能就得搞分库分表 + 读写分离。

比如你得分3个主库,承载每秒2000的写入请求,然后每个主库挂3个从库,一共9个从库承载每秒1.8万的读请求。

这样的话,你可能就需要一共是12台高配置的数据库服务器,这是很耗费钱的,成本非常高,很不合适。

大家看看下面的图,来体会下这种情况。

因此,我们完全可以把平时不太变化的数据放在缓存集群里,缓存集群可以采用2主2从,主节点用来写入缓存,从节点用来读缓存。

以缓存集群的性能,2个从节点完全可以用来承载每秒1.8万的大量读请求,然后3个数据库主库就是承载每秒2000的写请求和少量其他读请求就OK了。

这样一来,你耗费的机器瞬间变成了4台缓存机器 + 3台数据库机器 = 7台机器,是不是比之前的12台机器减少了很大的资源开销?

没错,缓存其实在系统架构里是非常重要的组成部分。很多时候,对于那些很少变化但是大量高并发读的数据,通过缓存集群来抗高并发读,是非常合适的。

我们看看下面的图,体会一下这个过程。

需要说明的是,这里所有的机器数量、并发请求量都是一个示例,大家主要是体会一下这个意思就好,其目的主要是给一些不太熟悉缓存相关技术的同学一点背景性的阐述,让这些同学能够理解在系统里用缓存集群承载读请求是什么意思。

20万用户同时访问一个热点缓存

好了,背景已经给大家解释清楚,现在就可以给大家说说今天重点要讨论的问题:热点缓存。

我们来做一个假设,现在有10个缓存节点来抗大量的读请求。正常情况下,读请求应该是均匀的落在10个缓存节点上的,对吧!

这10个缓存节点,每秒承载1万请求是差不多的。

然后我们再做一个假设,你一个节点承载2万请求是极限,所以一般你就限制一个节点正常承载1万请求就ok了,稍微留一点buffer出来。

好,所谓的热点缓存问题是什么意思呢?很简单,就是突然因为莫名的原因,出现大量的用户访问同一条缓存数据。

比如林志玲突然宣布结婚,这时是不是会引发短时间内每秒都数十万用户去查看这条热点新闻?

假设这条新闻就是一个缓存,对应一个缓存key,就存在一台缓存机器上,此时瞬时假设有20万请求奔向那一台机器上的一个key。

此时会如何?我们看看下面的图,来体会一下这种绝望的感受。

阅读全文 »
1…567…20
Morning Star

Morning Star

100 日志
14 分类
37 标签
GitHub
© 2021 Morning Star
由 Hexo 强力驱动
|
主题 — NexT.Pisces v5.1.4